

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE
In Science Double Award (4SD0) Paper 1P

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P70951A
Publications Code 4SD0_1P_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question	Anguar	Notes	Marks
number	Answer	Notes	Marks
1 (a)		comet	
(i)	centre of S marked in the grey region shown;	allow if centre of S marked in a similar position on the other side of the drawn orbit	1
(ii)	closed path drawn with curve; total size approximately twice size of original diagram;	curve should extend at least as far as the start of the word "diagram" in sentence below i.e.	2
(iii)	X marked on part of path closest to candidate's S;	reject if another contradictory cross drawn	1
(b)	 any three from: MP1. comet's orbit is more elliptical/oval; MP2. (orbital) path of comet is longer; MP3. idea that speed of comet varies but speed of planet does not; MP4. both planet and comet orbit a star; MP5. idea that orbital radius of comet varies but orbital radius of planet does not; MP6. plane of comet's orbit different to plane of planet's orbit; MP7. star is at centre of planet orbit but not at centre of comet orbit; 	comparison needs to be seen allow planet's orbit is more circular allow distance for path allow period of orbit of comet is longer allow the Sun for star allow (star's) gravitational force is constant for planet but varies for comet	3

Total for Question 1 = 7 marks

Question number	Answer	Notes	Marks
2 (a)	C (number of protons in the nucleus);		1
	A is incorrect because electrons are not found in the	auclaus	
	B is incorrect because this is deduced from the mass in		
	D is incorrect because this is the mass number		
(b)	D (number of protons and neutrons in the nucleus);		1
	A is incorrect because electrons are not found in the	ouelous	
	B is incorrect because this is determined from the ma		
	number itself	33 Humber and 13 Hot the mass	
	C is incorrect because this is the atomic number		
(c)	D (atoms with the same number of protons but a diffe	erent number of neutrons;	1
	A is incorrect because isotopes must have the same n	•	
	B is incorrect because isotopes have a different numb		
	C is incorrect because isotopes must have the same n	umber of protons	
(d)	A (adding an electron);		1
	B is incorrect because this will shange the element or	ad make it positively charged	
	B is incorrect because this will change the element ar C is incorrect because this will create a positively change the element ar		
	D is incorrect because this will change the element	iligea loll	
	b is meeticed because this will change the element		
(e)	B (radioactive decay happens at random);		1
	A is incorrect because this is a consequence of radioa	_	
	C is incorrect because it does not explain the random	•	
	D is incorrect because this explains why radioactive d	ecay nappens in the first place	
(f)	A (becquerel (Bq);		1
, ,			
	B is incorrect because this is the unit for charge		
	C is incorrect because this is the unit for energy		
	D is incorrect because this is the unit for power		

Total for Question 2 = 6 marks

Question	Answer	Notes	Marks
number			
3 (a)	40 000 {waves / vibrations / oscillations};	allow 40 000 wavelengths /	2
	in 1 second / unit time;	wavefronts allow per second	
	in i second / unit time,	attow per second	
(h) (i)	(united the second seco	all acceptant decord acceptant and	4
(b) (i)	(wave) speed = frequency × wavelength;	allow standard symbols and rearrangements e.g. $\lambda = v / f$	1
		condone s for speed	
		ignore incorrect symbols e.g wl	
		for wavelength, ws for wave	
		speed	
(ii)	substitution;		3
	rearrangement;		
	evaluation;	POT error = -1	
		correct answer with no working	
		gains full marks	
	e.g. 345 = 40 (000) × λ	8.6, 8.62, 8.63, 8.625 = 2 marks	
	$\lambda = 345/40 (000) \times \lambda$		
	$(\lambda =) 8.6 \times 10^{-3} \text{ (m)}$	allow 9×10^{-3} , 8.62×10^{-3} , 8.63×10^{-3}	
	(N -) 0.0 N 10 (III)	10^{-3} , 8.625×10^{-3} (m)	
(iii)	use of speed = distance/time seen or	allow any rearrangement or in	4
	implied;	correct symbols	
		allow d, s, x for distance	
		allow v for speed	
	factor of 2 seen;	condone s for speed	
	substitution;		
	evaluation;		
		0.007, 0.0068 scores 3 marks	
		(no factor of 2 used)	
	e.g.		
	speed = distance/time		
	distance should be doubled		
	345 = 4.70 ÷ time	- Have 0 04 0 04 4	
	(time =) 0.0136 (s)	allow 0.01, 0.014, 0.01362 (s)	
		0.01302 (3)	
(c)	idea that the person can see/knew what	e.g. marks the position that	1
(c)	idea that the person can see/know what (distance) they are measuring/eq;	(distance) is being measured to	'
		, , , , , , , , , , , , , , , , , , , ,	

	•		
(d)	any three from:	allow points shown on a labelled diagram allow higher level ideas i.e. light can be polarised but sound can't allow reverse argument (RA) for all marking points	3
	MP1. sound is longitudinal light is transverse;	can be given from diagram showing longitudinal and transverse waves	
	MP2. sound vibrations are in the direction of travel, light vibrations are perpendicular to the direction of travel;	allow oscillations, displacements for vibrations allow direction of energy transfer for direction of travel	
	MP3. light is electromagnetic, sound is not;	allow sound is mechanical, light is not	
	MP4. light can travel through a vacuum/space, sound cannot;	allow sound needs a medium but light does not	
	MP5. light travels (much) faster (in air) than sound; MP6. light slows down in denser medium but sound speeds up;	allow quoted speeds for comparison	

Total for Question 3 = 14 marks

Question number	Answer	Notes	Marks
4 (a)	suitable linear scale chosen (>50% of grid used); axes labelled with quantities and unit;	ignore orientation of axes do not accept multiples of 3 for scale condone missing "planets" label if individual planets are written with bars	3
	all bar plotting correct to nearest half square;	reject if non-linear scale used	
		bars do not need to be separated from each other or in the same order as the table	
		condone stick graphs	
	25 W/Kg strength is 15 15 15 15 15 15 15 15 15 15 15 15 15		
	Grankeakrann ock Surface	9.0 8.7 12.7	
	Mercury Verus Jupiter	Satury Uranus Nepaue	
	planes		
(b)	any one from: different masses; different sizes;	ignore different orbital radius ignore weight allow different volume, radii, diameter ignore different (surface) area	1
	different densities;		

(c)	as orbital radius increases, the orbital speed decreases;	condone idea that they are inversely proportional ignore negative correlation	1
(d)	substitution into rearrangement; evaluation; $v = \frac{2 \times \pi \times r}{T}$; evaluation;	-1 for POT error allow 1s.f. answer if supported by working	3
	e.g. $47.4 = 2 \times \pi \times 57.9 \times 10^6 / T$ $T = 2 \times \pi \times 57.9 \times 10^6 / 47.4$ $(T =) 7.68 \times 10^6$ (s)	allow 7.7×10 ⁶ , 7.67×10 ⁶ , 7675 030.154 (s)	

Total for Question 4 = 8 marks

Question number	Answer	Notes	Marks
5 (a)	any suitable natural source; e.g. (the) Sun, cosmic rays, rocks, (named) food, radon etc.	reject if contradicted by a list allow named radioactive isotopes e.g. carbon-14, uranium-235, uranium-238 ignore "space", cosmic microwave background radiation (CMBR)	1
(b) (i)	 any two described differences from: MP1. alpha has more mass; MP2. alpha has more charge; MP3. alpha is positive and beta is negative; MP4. alpha has shorter range (in air); MP5. alpha is slower; MP6. alpha is less penetrating; MP7. alpha is more ionising; MP8. alpha is a helium nucleus but beta is an electron; evidence of trying to balance nuclear equation; correct number of alphas; correct number of betas; e.g. 90 = 86 + 2α 	allow RA throughout allow alpha is heavier allow oppositely charged allow alpha stopped by air/paper and beta stopped by aluminium/thin metal allow alpha is 2 protons and 2 neutrons but beta is an electron e.g. 232 - 220 = 12 also gains first mark also gains first mark this balances atomic number despite mass number not balancing (if no beta was present)	3
	number of alpha = 3 number of beta = 2	present)	
(c)	any three from: MP1. (alpha) can cause cell mutation / cancer; MP2. idea that alpha is only dangerous when inside body; MP3. alpha is blocked by skin / few cm of air; MP4. thorium can only cause irradiation (since it remains in work surface); MP5. radon / gas can cause (both) contamination (and irradiation) (since it can go inside body / food); MP6. radon / gas can be inhaled / enter body; MP7. thorium cannot enter body;	allow both (thorium and radon) can cause irradiation	3

Total for Question 5 = 9 marks

Question number	Answer	Notes	Marks
6 (a)	(quantity that has both) magnitude and direction;	allow size, value, number or amount for magnitude ignore scale for magnitude	1
(b)	vertically downward arrow drawn; labelled weight; arrow drawn in opposite direction to velocity; labelled air resistance / drag / air friction;	ignore starting points and lengths of arrows 3 marks max. if more than two arrows drawn judge by eye dependent on previous mark being awarded (DOP) allow gravitational force, force of gravity ignore gravity, gravitational field strength, gfs DOP but allow if arrow pointing to the left condone wind resistance	4

Total for Question 6 = 5 marks

Questi numb		Answer	Notes	Marks
7 (a)		(current is the) rate of flow of charge;	allow amount of charge passing per unit time/second ignore rate of flow of electrons	1
(b)	(i)	idea that LED shows that current is present / fuse is still working;	allow idea that it shows when the fuse has blown	1
	(ii)	correct symbol for ammeter placed in series with fuse;		1
(c)	(i)	0.1 (A);		1
	(ii)	0.6 (A);		1
	(iii)	 lamp 3; any two from: (because) power = current × voltage; voltage is the same for all lamps; current is greatest; 	allow ECF from (c)(i) if I ₁ given as greater than 0.3(A) leading to lamp 2 being brightest allow P = V ² / R allow resistance is lowest	3

Total for Question 7 = 8 marks

Question	A	Natas	Marka
number	Answer	Notes	Marks
8 (a)	idea that energy can't be created or destroyed;	both created and destroyed / eq need to be seen ignore lost, removed for destroyed	1
(b) (i)	efficiency = $\frac{\text{useful (energy) output}}{\text{total (energy) output}}$;	ignore ×100(%) allow rearrangements allow total (energy) input for total (energy) output	1
(ii)	substitution; rearrangement; evaluation of useful energy output; subtraction from total to find wasted energy output; e.g. 0.15 = E _{useful} / 165 E _{useful} = 0.15 × 165 (E _{useful} =) 25 (J) (E _{wasted} =) 165 - 25 = 140 (J)	allow 24.75 (J) allow 140.25 (J) allow alternative method of determining 85% of energy wasted, leading to correct final answer e.g. % wasted = 100 - 15 = 85 0.85 = E _{wasted} / 165 (E _{wasted} =) 0.85 × 165 (E _{wasted} =) 140 (J)	4
(iii)		arrows can be in any orientation e.g. both useful and wasted arrows drawn horizontally allow elastic, input, total for initial arrow kinetic, useful (output) for narrower output thermal/heat, wasted (output) for wider output but apply ECF from (b)(ii) allow ECF from (b)(ii) judge by eye - wasted arrow should be at least 4× wider than useful arrow and they should sum to approximately the width of the input	3
	e.g. elastic thermal		

(c) (i)	45 (J);		1
(ii)	<pre>substitution into work done = force × distance; rearrangement; evaluation;</pre>		3
	e.g. 45 = force × 7.5 force = 45 / 7.5 (force =) 6.0 (N)	allow 6 (N)	

Total for Question 8 = 13 marks

Question			
number	Answer	Notes	Marks
9 (a) (i)	pressure (difference) = height × density × g;	allow standard symbols and rearrangements e.g. $h = p / (\rho \times g)$ condone d for density	1
(ii)	substitution; rearrangement; evaluation in cm; e.g.	allow g = 9.81, 9.8 -1 for POT error but check carefully due to value of g 0.23 (cm) gains 2 marks	3
	2300 = h × 1000 × 10 h = 2300 / (1000 × 10) (h =) 23 (cm)	allow 23.46, 23.44 (cm)	
(b) (i)	line drawn of similar curved path and aiming towards ground to the left of path from hole B;	reject if curve drawn upwards at any point	1
(ii)	any two from: MP1. pressure is lower at A; MP2. force acting on water at A is less; MP3. water leaves the bottle at a lower speed/KE at A;	allow "near top of bottle"/eq for A allow RA allow RA allow RA	2
	OR		
	any two from: MP1. initial velocity of water is horizontal; MP2. (force of) gravity acts on the water; MP3. water accelerates downwards;	allow water leaves bottle horizontally	
(iii)	any three from: MP1. idea that path from C is identical / symmetrical to path from B; MP2. (because) pressure is the same; MP3. (initial) speed of water is the same; MP4. idea that pressure acts (equally) in all directions;	ignore holes at same height above ground allow path is the same (as B) allow force acting on water is the same allow (initial) KE of water is the same	3
(iv)	any one from: MP1. idea that it allows air to enter the bottle (as water level falls); MP2. idea that it maintains equal pressure between air inside and air outside the bottle; MP3. idea that no water would come out of the holes otherwise;	Total for Question 9 = 11 mark	1

Total for Question 9 = 11 marks

Question number	Answer	Notes	Marks
10 (a)	substitution into $v^2 = u^2 + 2as$; rearrangement; evaluation;	allow alternative method involving changing GPE lost = KE gained e.g. sub into mgh = ½mv²	3
	e.g. $v^2 = 0 + (2 \times 10 \times 18)$	g	
	$v = \int 360$ (v =) 19 (m/s)	allow 18.8, 18.78, 18.79,18.97 (m/s)	
(b) (i)	kinetic energy = $1/2 \times \text{mass} \times \text{speed}^2$;	allow rearrangements and standard symbols e.g. KE = ½ × m × v ²	1
(ii)	substitution; evaluation; e.g.	allow ECF from (a) allow alternative method involving changing GPE lost = KE gain allow 370 000-372 000 from g = 9.8, 9.81	2
	(KE =) 0.5 × 2100 × 19 ² (KE =) 380 000 (J)	allow 400 000, 378 000, 379 000 1 mark only for not converting tonnes to kg e.g. KE = 380 (J), 378 (J)	
(c)	idea that energy is transferred from a gravitational (store) to a kinetic (store);	allow answers in terms of types of energy rather than stores and transfers allow GPE to KE	4
	<pre>idea that energy is transferred to a thermal (store) of {car / shaft / surroundings};</pre>	allow heat for thermal	
	idea that energy is transferred mechanically;	allow energy transferred due to a named force e.g. gravity, friction	
	idea that energy is transferred by radiation / by heating;	allow energy transferred as sound	

Total for Question 10 = 10 marks

Answer	Notes	Marks
any two from: MP1. height is <u>independent variable</u> ; MP2. at least five different heights tested; MP3. range is <u>dependent variable</u> ;		6
with any two from: MP4. one control variable named; MP5. second control variable named; MP6. idea of repeating process at each height to find mean;	e.g. launch speed/launch force, angle of launch, same ball allow repeating process at each height to identify anomalies	
AND: MP7. ruler used to measure height / range; MP8. suitable method to see where ball lands;	allow tape measure condone metre stick e.g. record video (and playback in slow motion) cover ball in paint, material on floor to show landing point etc.	
smooth curve within one small square of data points;	ignore extrapolation of curve beyond the points take care the curve is not dot to dot straight lines	1
height reading consistent with curve of best fit;	allow 0.15-0.25 (m) allow ECF from (b)(i)	1
idea that (both) variables are continuous;	allow results/data are continuous	1
pair of readings taken from graph; substitution into given formula; rearrangement; evaluation to at least 1 decimal place;	allow data points or readings taken from candidate's curve allow ECF from (b)(i) and (b)(ii)	4
e.g.	3 marks max. for reverse argument e.g. using speed of 3 m/s to calculate height or range	
range = 1.92m when height = 2.0m 1.92 = launch speed × $\sqrt{\frac{2.0}{5}}$ launch speed = 1.92 / $\sqrt{0.4}$ (launch speed =) 3.0 (m/s)	allow range 2.9-3.1 (m/s) unless ECF from (b)(i)	
	any two from: MP1. height is independent variable; MP2. at least five different heights tested; MP3. range is dependent variable; with any two from: MP4. one control variable named; MP5. second control variable named; MP6. idea of repeating process at each height to find mean; AND: MP7. ruler used to measure height / range; MP8. suitable method to see where ball lands; smooth curve within one small square of data points; height reading consistent with curve of best fit; idea that (both) variables are continuous; pair of readings taken from graph; substitution into given formula; rearrangement; evaluation to at least 1 decimal place; e.g. range = 1.92m when height = 2.0m 1.92 = launch speed × $\sqrt{\frac{2.0}{5}}$ launch speed = 1.92 / $\sqrt{0.4}$	any two from: MP1. height is independent variable; MP2. at least five different heights tested; MP3. range is dependent variable; with any two from: MP4. one control variable named; MP5. second control variable named; MP6. idea of repeating process at each height to find mean; AND: MP7. ruler used to measure height / range; MP8. suitable method to see where ball lands; MP8. suitable method to see where ball lands; smooth curve within one small square of data points; smooth curve within one small square of data points; smooth curve within one small square of data points; allow tape measure condone metre stick e.g. record video (and playback in slow motion) cover ball in paint, material on floor to show landing point etc. smooth curve within one small square of data points; take care the curve is not dot to dot straight lines allow 0.15-0.25 (m) allow ECF from (b)(i) idea that (both) variables are continuous; allow results/data are continuous pair of readings taken from graph; substitution into given formula; rearrangement; evaluation to at least 1 decimal place; allow data points or readings taken from candidate's curve allow ECF from (b)(i) and (b)(ii) 3 marks max. for reverse argument e.g. using speed of 3 m/s to calculate height or range e.g. 1.92 = launch speed × √2.0/5 launch speed = 1.92 / √0.4 ((aunch speed = 1.92 / √0.4 ((aunch speed = 3.0 (m/s)) allow range 2.9-3.1 (m/s) unless

Total for Question 11 = 13 marks

Ques		Answer	Notes	Marks
12 (a)	2.8 (mA);	allow -2.8 (mA)	1
(b) (i)	same value as (a) but opposite polarity e.g2.8 (mA);	allow ecf from (a)	1
	(ii)	reading larger than value given in (a);	ignore polarity	1
(c		any one from: MP1. longer needle; MP2. more turns in coil; MP3. stronger magnet; MP4. weaker return spring;	allow idea of moving scale further up the needle ignore bigger coil, more coils ignore bigger magnet	1
(d) (i)	A (accuracy); B is incorrect because no repeats are being taken C is incorrect because no repeats are being taken D is incorrect because the scale of the ammeter is the same		1
	(ii)	idea of subtracting/adding the difference/error from the measurement;	allow subtract/add a quoted value of current even if value is incorrect	1

Total for Question 12 = 6 marks

